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Abstract

This paper presents a full-wave analysis of three
Edge-Guided Mode microstrip isolator structures.
Galerkin’s technique in the spectral domain is used
to calculate the insertion loss and the isolation of the
structures. The paper presents figures of merit of dif-
ferent multilayer structures. A multilayer structure re-
sulted in increased isolation and lower insertion loss.

1 Introduction

The isolator is one of the most widely used magnetic
devices. The principle of operation of these devices
1s based on the field displacement effect; i.e the mi-
crowave field configurations of the forward and back-
ward propagating waves are different. If an absorbing
resistive film is placed at one edge of the conductor
, then different attenuation of these two waves occurs
and an isolator is realized. The geometry of an isolator
with a resistive thin film is shown in Fig. 1. Experi-
mental work on this type of isolator has been widely re-
ported in the literature [1] -[6]. However, no full-wave
analysis of the present structure has been reported to
date.

2 Full Wave Formulation

A versatile technique for formulating the Green’s func-
tion for structures with transversely magnetized ferrite
substrates was first described by El-Sharawy [7]. This
technique utilizes the transmission matrix of the ferrite
layer, wherein all the fields are expressed in terms of ar-
bitrary constants that arise in the solution of the wave
equation of the medium. The same technique is used
here to derive the Green’s function for structures con-
taining a normally magnetized ferrite substrate. The
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Figure 1: Edge-Guided isolator with resistive film
loading,.

transmission matrix T is a 4 x 4 matrix written as [7]
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where T' |, Z | Y , T are 2 x 2 submatrices of T,

”~” denotes the spatial Fourier transform defined as
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El and Ez are the tangential electric field at the
boundaries of the layer, and T 1 and J- 5 are t@ tangen-
Ei_gl surface currents defined by J, = 2 x H,, where

~

H, is the tangential magnetic field at the nth surface
of the layer.

Because of the nature of the problem, the normally
biased ferrite substrate transmission matrix is more
difficult to derive than the one for transversely biased
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ferrite. The derivation was greatly facilitated by the
use of the symbolic computation software, MAPLE V.

We investigated three different isolator structures.
The first structure comprises a single normally mag-
netized ferrite subsirate as shown in Fig. 2. In the
second structure, we added another dielectric layer un-
derneath the ferrite layer as shown in Fig. 3. The
third structure, called “drop-in element”, is an isola-
tor structure compatible with Monolithic Microwave
Integrated Circuits (MMIC). In this structure, a di-
electric substrate with relative permittivity equal to
9.8 is used. To form an EG isolator, we place a piece
of ferrite with a resistive thin film on top of the dielec-
tric as shown in Fig. 4.

2.1 Green’s Function Formulation

A spectral-domain Green’s function, é, 1s formulated
that relates the transformed electric field E’s on one

surface to the transformed electric surface currents J. s
on the same surface. This relation has the form,

Fulkar ky) = G (koy ky) T (ko ky) (3)

Using the transmission matrix, Green’s functions can
be formulated in the spectral domain for single and
multi-layer structures. For the single-layer structure,
the Green’s function is

—

=T=/~t =7
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where Z § and Tf are submatrices of the transmission

matrix of a normally biased ferrite layer and éa 18
a semispace Green’s function, which is calculated by
taking the limit of the dielectric Green’s function when
the thicknes of the layer, dg, goes to infinity and the
dielectric constant goes to one.

(9N

Ga = Jim G, (5)
Y

where Gy is formed using the dielectric transmission
matrix derived by El-Sharawy [7].

For the ferrite-dielectric structure, the Green’s func-
tion is
= -1

G=(Z T +G. )! (6)
=T =J

and Z and T are the elements of [Thew], where

[Tnew] = [Tf ] [Td]
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Figure 2: Geometry of single layer structure.

Figure 3: Geometry of double layer structure.
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Figure 4:

Geometry of drop-in element structure.



which is the result of the ferrite and dielectric trans-
mission matrix multiplication.

For the three layer structure (the drop-in element)
the Green’s function is

= =TIl —r=s-1 1
G= (ZuTu +Zde )— (7)

where Z,, and T, are the elements of the new trans-
mission matrix which resulted from the ferrite and air
transmission matrix multiplication.

3 Numerical Results and Con-
clusion

We compared our Green’s function for the single layer
structure shown in Fig. 2 with the Green’s function
derived by Pozar [8] using the boundary condition
method. An excellent agreement between these two
methods was achieved.

Since the Green’s function of a multi-layer structure
including a normally ferrite substrate is not available
in the literature, we compared the limiting case of the
ferrite with the Green’s function derived by Aberle for
multi-layer dielectric structures [9]. Again excellent
agreement was achieved.

We constructed a 2-D MoM code for simulating an
EG mode isolator with resistive loading as shown in
Fig. 1. First, we examined the limiting case of ferrite
with zero ferrite parameters, which is essentially the
dielectric case, and compared our results to the widely
published results for dielectric microstrip. The phase
constants for forward and backward waves are shown
in Fig. 5. The computed insertion loss and isolation
are given in Fig. 6

A preliminary analysis of the three isolator struc-
tures indicates that the best electrical performance is
given by the double-layer structure shown in Fig. 3.
While, the performance of the triple-layer structure
shown in Fig. 4 is not as good as the other two struc-
tures, its advantage is that it can be compatible with
MMIC. The insertion loss of the three isolator struc-
tures is compared in Fig. 7 and the isolation of the
three structures is compared in Fig. 8.

For a single layer of ferrite isolator, the field ellip-
ticities at the upper and the lower boundaries with air
counteract each other. If the air at one of these bound-
aries is replaced by a dielectric layer, as in Figures 4
and 3, one of the counteracting ellipticities is replaced
by a co-acting ellipticity which leads to increase in the
nonreciprocity and the isolation as well [10]-[12].
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Figure 5: The phase constants of forward and back-
ward waves d = 7.62 x 107*m, ¢; = 12.0, 47 M, =
1750G, Hg. = 8000e, AH = 80.0¢, Ry, = 1009,
W =1.016 x 10~ 2m.
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Figure 6: Computed isolation and insertion loss d =
7.62 x 107*m, ¢ = 12.0, 4vM, = 1750G, Hg, =
8000e, AH = 80.0¢, R, = 100Q, W = 1.016 x 10™2m
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Figure 7: Comparison of the insertion loss for three
isolator structures. (47M, = 1750 G, Hg. = 800 Oe,
AH = 80. Oe, R, = 10092, W = 1.016E — 2 m. For
the single-layer: d;y = 7.62E — 04 m, ¢; = 12.0. For
the double-layer: dy = 2.62E — 04 m, ¢4 = 3.00. For
the triple-layer: dj = 4.00F — 04 m, ¢ = 8.90 d, =

5.00F — 03 m, ¢, = 1.00).
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Figure 8: Comparison of the isolation for three isolator

structures. The same parameters are as in Fig. 7
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